S8. Electrodynamics
Gravity is not the only "force" in the universe. In fact, we believe there are 4 fundamental forces of nature:

1) Gravity
2) Electromagnetic force
3) The strong force
4) The weak force

If you consider two electrons close to each other, they repel each other:

Similarly, two protons repell each other However, an electron and a proton will attract each other:

$$
-\longrightarrow
$$

This force is 10^{40} times stronger than gravity!

How is it then that many protons are stuck to each other (and to neutrons) inside an atomic nucleus? Because the "strong force" acting only along very short distances ($\sim 10^{-15} \mathrm{~m}$) attracts them to each other (by a factor of 100 compared to electric repulsion)
There is also a "weak force" responsible for radioctivity
§8.1 Coulomb's law
How do we measure the electric charge of? What is the force between two static charges q_{1} and q_{2} as a function of their positions?
\rightarrow answers are contained in "Coulomb'slaw" (Charles-Augustine de Coulomb

$$
(1736-1806))
$$

$$
\overrightarrow{F_{12}}=-F_{21}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}^{2}} \vec{e}_{12}
$$

where $r_{12}=\left|\vec{r}_{2}-\vec{r}_{1}\right|$ and $\vec{e}_{12}=\frac{\vec{r}_{2}-\vec{r}_{1}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|}$

Unit of charge: 1 Coulomb [C]

$$
\frac{1}{4 \pi \varepsilon_{0}}=9 \cdot 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{C^{2}}
$$

If two charges, I coulomb each, are separated by I meter, the repulsive force between them will be $9 \cdot 10^{9} \mathrm{~N}$. (weight of about 10,000,000 adults)
In these units the charge of the proton, denoted by e, is $1.6 \cdot 10^{-19} \mathrm{C}$ and that of the electron is $-e$.

Properties of charge:

- charge is conserved "locally":
suppose charge would be conserved nou-locally:

\rightarrow due to special relativity, only simultaneous in one reference frame (can choose a reference frame where there are at an instance two particles or no particle)
\rightarrow conservation laws that hold in all frames must be local
- charge is "quantized":

All charges we have ever seen are integral multiples of a basic unit of charge, $e=1.6 \cdot 10^{-19} \mathrm{C}$

Superposition principle
Consider 3 charges q_{1}, q_{2}, and q_{3} at \vec{r}_{1}, \vec{r}_{2} and \vec{r}_{3} :

What will be the force on q_{3} due to the other two? answer: $\quad \vec{F}_{3(1+2)}=\vec{F}_{31}+\vec{F}_{32}$ "superposition principle Cencountered already in Newtonian mechanics)

Question: Suppose we want to verify Coulomb's law. How will you confirm the dependence of the force on q_{1}, q_{2}, and $r=\left|\vec{r}_{1}-r_{2}\right|$? This about it.

The ratio of gravitational to electric forces
Claim: $\mathrm{Fg} / \mathrm{Fe}$, ratio of gravitational to electric forces, $\sim \underbrace{10^{-40}}_{T}$

How do we obtain this answer?
Consider two particles of masses m, and m_{2} and charges q_{1} and q_{2}, a distance r apart.

$$
\rightarrow \frac{F_{g}}{F_{e}}=\left(\frac{G m_{1} m_{2}}{r^{2}}\right) \cdot\left(\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}}\right)^{-1}=\frac{G m_{1} m_{2} \cdot 4 \pi \varepsilon_{0}}{q_{1} q_{2}}
$$

For two electrons, this gives:

$$
\frac{F_{g}}{F_{e}}=\frac{6.7 \cdot 10^{-11} \cdot\left(9 \cdot 10^{-31}\right)^{2}}{\left(1.6 \cdot 10^{-19}\right)^{2} \cdot 9 \cdot 10^{9}} \simeq 2.3 \cdot 10^{-43}
$$

proton and electron: $\frac{\mathrm{Fg}}{\mathrm{Fe}} \sim\left(0^{-40}\right.$
For two protons: $\sim 10^{-36}$
But: in macroscopic bodies, electric charges come in pairs and cancel!
That's why the earth and the moon attract each other by gravity!

Coulomb's law for continuous charge density
Example 1:
Consider a circular wire of radius R with λ coulombs per meter, lying in $x y$-plane:

Find the electric force it exerts on a point charge q located at height z on the z-axis.

Solution:

$$
|d \vec{F}|=\frac{q \cdot \lambda d l}{4 \pi \varepsilon_{0}\left(R^{2}+z^{2}\right)}
$$

Only need keep the vertical part of the force, the horizontal part is cancelled by $d l^{*}$:

$$
\begin{aligned}
F_{z} & =\int d F_{z}=\int \frac{q \cdot \lambda d l}{4 \pi \varepsilon_{0}\left(R^{2}+z^{2}\right)} \times \frac{z}{\sqrt{R^{2}+z^{2}}} \\
& =\frac{q \cdot \lambda-2 \pi R z}{4 \pi \varepsilon_{0}\left(R^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

where the factor $\frac{z}{\sqrt{R^{2}+z^{2}}}=\cos \theta$ projects out the vertical part of $d F$ and $2 \pi R$ is the integral over de.
Tests:

1) set $z=0 \longrightarrow$ should give zero by symmetry and indeed if does!
2) for $z \gg R$ the wire should appear like a point charge, it does!
§8.2 The electric field \vec{E}
Let us write the force q_{2} due to q_{1} :

$$
\begin{aligned}
\overrightarrow{F_{21}} & =\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}^{2}} \vec{e}_{12} \\
& =\frac{q_{1}}{4 \pi \varepsilon_{0} r_{12}^{2}} \vec{e}_{12} \cdot q_{2}=\vec{E}\left(\overrightarrow{r_{2}}\right) q_{2}
\end{aligned}
$$

$\vec{E}\left(\vec{r}_{2}\right)$: "the electric field at the location of q_{2} "
Step 1: The charge q produces a field $\vec{E}\left(\vec{r}_{2}\right)=\frac{q_{1}}{4 \pi \varepsilon_{0} r_{12}^{2}} \vec{e}_{12}$ at the location of q_{2}
Step 2: The charge q_{2} responds to the field by feeling a force $\vec{F}_{21}=q_{2} \vec{E}\left(v_{2}\right)$
Example 2:
compute \vec{E} with charges of at $(0,0),(0,0),(0, a)$ of a square:

where we have:

$$
\left.\begin{array}{l}
\vec{E}_{1}=\frac{q}{4 \pi \varepsilon_{0} a^{2}} \overrightarrow{e_{1}} \\
\vec{E}_{2}=\frac{q}{4 \pi \varepsilon_{0} 2 a^{2}} \frac{\overrightarrow{e_{1}}+\overrightarrow{e_{2}}}{\sqrt{2}} \\
\vec{E}_{3}=\frac{q}{4 \pi \varepsilon_{0} a^{2}} \overrightarrow{e_{2}}
\end{array}\right\} \Rightarrow \begin{gathered}
\vec{E}(a, a) \\
=\frac{q}{4 \pi \varepsilon_{0}}\left(1+\frac{1}{2 \sqrt{2}}\right)\left(\vec{e}_{1}+\vec{e}_{2}\right)
\end{gathered}
$$

Visualizing the field
For a point-charge at the origin, the electric field is:

$$
\begin{aligned}
\vec{E}(\vec{r}) & =\frac{q}{4 \pi \varepsilon_{0} r^{2}} \vec{e}_{r} \\
& =\frac{q}{4 \pi \varepsilon_{0} r^{3}} \stackrel{r}{r}
\end{aligned}
$$

Question. Do we lose information about the electric field at a poit \vec{r} if we connect arrows to lines?

1) We retain the information about the "direction" of the electric field, ie. the direction of the force vector acting on a "probe charge"
2) It seems that we are losing information about the "magnitude" of the force
But: "density" of field lines through a fixed area ΔA contains information about magnitude!

area of a sphere in \mathbb{R}^{3} grows as r^{2} with the radius r
\rightarrow density of N field lines at distance r :

$$
\sim \frac{N}{r^{2}} \sim|E|
$$

Proposition 1:
The electric field of a point-charge is a conservative field. That is, the force on a probe charge is a conservative force.
Proof:
According to Theorem 3 in $\S 4$, a force is conservative if it can be written as $\vec{F}=\vec{\nabla} U(\vec{r})=\left(\begin{array}{l}\partial_{x} U \\ \partial_{y} u \\ \partial_{z} u\end{array}\right)$
$\rightarrow \frac{\text { for the electric field }}{\vec{E}}$ we $\vec{E} \vec{\nabla} V$ \vec{E} we have to show: $\vec{E}=-\vec{\nabla} V$
Claim: $V(r)=\frac{q}{4 \pi \varepsilon_{0} r}$
We compute:

$$
\begin{aligned}
-\frac{\partial V}{\partial x} & =-\frac{q}{4 \pi \varepsilon_{0}} \frac{\partial(1 / r)}{\partial x}=-\frac{q}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial x}\left[\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right] \\
& =\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{2}\right] \frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \frac{x}{r} \\
\Rightarrow-\vec{\nabla} V & =\frac{q}{4 \pi \varepsilon_{0} r^{2}} \underbrace{\underbrace{}_{x} x+\overrightarrow{e_{y} y}+\overrightarrow{e_{z}} z}_{=\vec{e}_{r}}
\end{aligned}=\vec{E}(\vec{r}) \quad . \quad .
$$

Example 3 (field of dipole):
Consider a charge q at $(a, 0)$ and a charge $-q$ at $(-a, 0)$. Consider the field at a generic point (x, y).

From the picture, we see:

$$
\begin{aligned}
\vec{E}_{+} & =\frac{q}{4 \pi \varepsilon_{0}} \frac{\vec{r}_{+}}{r_{+}^{3}}=\frac{q}{4 \pi \varepsilon_{0}} \frac{\vec{e}_{1}(x-a)+\vec{e}_{2} y}{\left((x-a)^{2}+y^{2}\right)^{3 / 2}} \\
\vec{E}_{-} & =-\frac{q}{4 \pi \varepsilon_{0}} \frac{\vec{r}_{-}}{r_{3}^{3}}=-\frac{q}{4 \pi \varepsilon_{0}} \frac{\vec{e}_{1}(x+a)+\vec{e}_{2} y}{\left((x+a)^{2}+y^{2}\right)^{3 / 2}} \\
\Rightarrow \vec{E} & =\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{\vec{e}_{1}(x-a)+\vec{e}_{2} y}{\left((x-a)^{2}+y^{2}\right)^{3 / 2}}-\frac{\overrightarrow{e_{1}}(x+a)+\vec{e}^{2} y}{\left((x+a)^{2}+y^{2}\right)^{3 / 2}}\right]
\end{aligned}
$$

Far a point A with $x>a$, we obtain:

$$
\bar{E}=\frac{q}{4 \pi \varepsilon_{0}} \vec{e}_{1}\left(\frac{1}{(x-a)^{2}}-\frac{1}{(x+a)^{2}}\right)
$$

$$
\begin{aligned}
& =\frac{q}{4 \pi \varepsilon_{0}} \vec{e}_{1} \frac{4 a x}{\left(x^{2}-a^{2}\right)^{2}} \\
& =\frac{\vec{p}}{4 \pi \varepsilon_{0}} \frac{2 x}{\left(x^{2}-a^{2}\right)^{2}} \text { where } \vec{p}=2 a q \vec{e}_{1}
\end{aligned}
$$

"dipole moment"
\longrightarrow for $x \gg a$, we get:

